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Abstract

The Receiver Operating Characteristic (ROC) curve is a two dimensional

measure of classification performance. The area under the ROC curve (AUC)

is a scalar measure gauging one facet of performance. In this note, an attempt

is made to relate the shape of the ROC curve (and the area under it) to features

of the underlying distribution of forecasts, allowing for an interpretation of the

former in terms of the latter. To that end, three idealized examples are con-

sidered analytically as models of the underlying distribution of forecasts. The

examples cover non-probabilistic and probabilistic forecasts. The exact expres-

sions for ROC and AUC are derived, in turn, allowing for their interpretation

in terms of features of the underlying distributions. For example, a asymmetric

ROC curve can be interpreted as unequal variances for the distributions. Fur-

thermore, it is shown that AUC discriminates well between “good” and “bad”

models, but not between “good” models.
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1 Introduction

In the words of the late Alan Murphy “Performance is a multifaceted thing.” 1 How-

ever, that fact can often be obfuscated by technical difficulties. For example, in

regression and classification problems, it is relatively straightforward to select a sin-

gle scalar (i.e., 1-dimensional) measure such as mean squared error, and proceed to

optimize it. Similarly, in assessing the superiority of one model over another, it is

standard practice to compare the respective values of a single scalar measure like

chi-squared. A number of such scalar measures common in meteorological circles are

examined in Marzban (1998). However, if one adopts several measures to optimize

simultaneously, then the optima are often not unique.2

The adoption of a scalar measure presumes that only some specific aspect of

performance is of importance in the corresponding problem. There exist situations

wherein that unique facet can be identified, but that is not the case in most realistic

problems. In general, a proper assessment of the performance of some model or

forecasting scheme is an extremely difficult task mostly due to the multidimensional

nature of performance itself. It is quite likely that one model will outperform another

model in terms of one scalar measure of performance, but not in terms of another

measure. This is not a defect of the models, but a simple consequence of the fact that

performance is a multidimensional quantity.

For probabilistic forecasting a number of multidimensional tools have been de-

veloped in meteorological circles (Murphy and Winkler 1987, 1992). Naturally, most

are diagrams, i.e. 2-dimensional. As such, they can provide a relatively complete

assessment of performance, at least for the 2-class problem wherein one forecasts the

probability of belonging to one of two classes, e.g., tornado/nontornado, rain/no-rain,

etc. Larger-class problems can often be treated in terms of several 2-class problems,

albeit with some loss of information.

1Personal communication.
2The task of simultaneously optimizing several criteria belongs to the topic of multiobjective (or

Pareto) optimization (Miettinen, 1999).
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For nonprobabilistic or categorical forecasts, the contingency table (Wilks 1995)

provides a complete representation of performance for any number of classes, but it

is difficult to display and interpret. However, the 2-class problem is unique in that

the performance of a model can be displayed in a (2-dimensional) diagram. One such

diagram is the Receiver Operating Characteristic (ROC) curve. Its history is rich

and lively; an exhaustive list of references has been compiled by K. Zou (2001). It

is a graphic representation of the performance of a model that produces categorical

forecasts of a 2-class event. Specifically, it is a parametric plot of the hit rate (or

probability of detection) vs. the false alarm rate, as a decision threshold is varied

across the full range of the forecast quantity. Fig. 1 displays three ROC curves repre-

senting different levels of performance (from Marzban and Witt 2001). The diagonal

line corresponds to random forecasts (i.e., poor performance), and performance is

improved the further the curve bows away from the diagonal. In fact, the area under

the ROC curve (AUC) is often taken as a scalar measure of performance. An area

of 0.5 would reflect random forecasts, while an area of 1 suggests perfect forecasts.

Distilling a 2-dimensional entity like the ROC curve to a scalar quantity like AUC

implies that the latter must depend on a unique combination of the parameters of the

underlying distribution. This affinity between a measure of performance and some

specific combination of the underlying parameters will be made explicit in the fol-

lowing. In this figure, error bars are also displayed for the purpose of assessing the

statistical significance of the performance.

The ROC curve has great utility in assessing performance in a multi-dimensional

(or non-scalar) setting. The more fundamental quantity, however, is the class-conditional

distribution of the forecasts, i.e., the distribution of the forecast quantity for each

class, separately. After all, the quantities from which an ROC curve is derived -

hit rate and false alarm rate - are areas under these distributions, above or below

some decision threshold (Masters 1993). Although the computation of ROC curves

does not require knowledge of these distributions, it is natural to utilize the con-

nection between the ROC curve and the underlying distributions to infer something

about the latter. Here, several characteristic features of ROC curves will be identified
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with features of the underlying distributions. As such, the shape of the ROC curve

can be interpreted. In addition to placing the assessment of performance on a more

fundamental foundation, knowledge of the underlying distributions can guide the de-

velopment of better models. Armed with the connection between the ROC curve and

the underlying distributions, one can also further interpret the meaning of AUC.

2 Preliminaries

Henceforth, the two classes are labeled as 0 (nonevent) or 1 (event). The 4 elements

of the 2× 2 table are C1 (C4), the number of correctly classified nonevents (events),

and C2 (C3), the number of incorrectly classified nonevents (events). Although the

table has 4 elements, there are only two degree of freedom if the class-conditional

sample sizes are fixed, because N0 = C1 + C2, and N1 = C3 + C4. The contingency

table, in turn, can be reduced to a host of scalar measures of performance, but in

order to preclude any loss of information (due to the reduction from two to one degree

of freedom) two scalar measures are considered. Two common measures are the hit

rate, H, and the false alarm rate, F :

H =
C4

C3 + C4

, F =
C2

C1 + C2

.

The ROC curve is a parametric plot of H vs. F as a decision threshold is varied

across the full range of the forecast quantity. Although the amount of bowing away

from the diagonal is a measure of performance, the specific shape (or features) of

the curve are informative, and yet often ignored. That shape is determined by the

class-conditional distributions of the forecast quantity. Therefore, it is possible to

translate the shape of an ROC curve to some information regarding the underlying

distributions.

In order to get a handle on the specific relation between the shape of the ROC

curve and the underlying conditional distributions, it is instructive to consider some

models. For example, one can model the class conditional distributions with gaus-

sians, with means µ0, µ1, and standard deviations σ0, σ1. Then it is possible to write
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down analytic expression for H and F. In particular, if σ2
0 > σ2

1, then

H =
1

2
[1− erf(

t− µ1√
2σ1

)] , F =
1

2
[1− erf(

t− µ0√
2σ0

)],

where t is the decision threshold, and erf() is the Gaussian Error Function. Exchang-

ing 0 ↔ 1 in these equations leads to the respective rates for the case σ2
1 > σ2

0. Given

the appearance of erf(), it is difficult to arrive at an explicit functional expression

for the ROC curve. For this reason, two different approximations will be considered

here; uniform distributions (Fig. 2a) and bell-shaped distributions (Fig. 3a). Fur-

thermore, when the forecast quantity is a probability, then gaussian approximations

are inadequate, since probabilities are restricted to the range 0 to 1, while gaussians

are unbound. For this situation, the distributions will be modeled as simple approxi-

mations shown in Fig. 4a. These overly simplified models suffice in arriving at some

general conclusions.

3 Uniform

A generic situation involving forecasts with uniform distributions is shown in Fig.

2a. There are four parameters involved - two means, µ0 and µ1, and two “standard

deviations”, σ0 and σ1. Without loss of generality, it is assumed that µ1 ≥ µ0. It is

then straight forward to show that the false alarm rate and the hit rate are given by

F =
µ0 + σ0 − t

2σ0

, H =
µ1 + σ1 − t

2σ1

, (1)

where t is the decision threshold above (below) which a case is classified into class 1

(0).

The ROC curve follows immediately from (1):

H =
σ0

σ1

F +
δµ + δσ

2σ1

, (2)

where δµ = µ1 − µ0 and δσ = σ1 − σ0. Fig. 2b displays the situation. It can be seen

that the ROC curve consists of three line segments, with the equation for the middle

segment given by (2).
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Several observations can be made. First, (2) implies that two models with differ-

ent means and standard deviations can yield the same ROC curve if they have the

same slope and intercept (see Fig. 2b). As such, the ROC curve does not uniquely

specify the underlying parameters. In other words, there is a family of underlying

distributions that give rise to the same ROC curve.

Second, the length of the vertical segment is determined by two quantities, δµ

and σ0/σ1. This is sensible since the goodness of the underlying model is determined

by both quantities. By contrast, the slope of the middle segment depends only on

the ratio of the standard deviations (and not δµ). As such, the inequality of σ0 and

σ1 reflects itself as an ROC line that is not parallel to the diagonal.

Given the analytic expression for the ROC curve (2), it is then possible to compute

the area under the curve, AUC:

AUC = 1− 1

8
(

∆
√

σ0σ1

)2 (3)

where

∆ = δµ− (σ0 + σ1). (4)

This is an instance of what was previously referred to as the affinity between a mea-

sure of performance (like AUC) and a certain function of the underlying distribution

parameters. In this case, AUC has an affinity for the combination ∆ = δµ−(σ0 +σ1).

This is easy to understand: a better model should have a larger AUC, which in turn

means that it should have a smaller ∆. And that means a larger δµ, and a smaller

σ0 + σ1. In short, model selection based on AUC selects for sharp and widely sepa-

rated class-conditional distributions, where sharpness is measured by the sum of the

standard deviations, and separation is gauged by the difference in their means.

Moreover, as a function of ∆, AUC is a parabola. Fig. 2c shows an instance for

σ0 = σ1 = 0.05 and σ0 = 0.05, σ1 = 0.10. It is this parabolic behavior that explains

the often experienced empirical finding that AUC discriminates well between good and

bad models, but not between good models. Note that a perfect model corresponds

to ∆ = 0 in Fig. 2c where the curves flatten off. Therefore, good models have

approximately the same values of AUC.
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Equation (4) also implies that any set of models whose µ and σ values lead to the

same value of ∆, also yield the same value for AUC. In other words, a given value

of AUC corresponds to a range of values for µ0, µ1, σ0, σ1 that reside on the plane

defined by µ1−µ0− (σ0 +σ1) = constant. Note that this plane is a larger space than

the space of parameters that yield equivalent ROC curves. The former is the plane

given by µ1−µ0− (σ0 +σ1) = constant, while the latter is given by the intersection of

two planes (i.e. a line) - the plane defined by σ0/σ1 = constant and that defined by

(δµ+ δσ)/2σ1 =constant; see (2). In short, AUC is even more ambiguous in selecting

an underlying model than the ROC curve itself.

4 Bell-shaped

Most distributions arising in practice are not uniform but bell-shaped. One approxi-

mation to bell-shaped distributions is shown in Fig. 3a. 3 The added complexity is

that no single expression for F and H can be written. However, it is possible to write

analytic expressions in each of the regions: µ0 − σ0 ≤ t ≤ µ0, µ0 ≤ t ≤ µ1 − σ1, and

µ1− σ1 ≤ t ≤ µ0 + σ0. The remaining region to the right has F = 0. For example, in

the second and third regions one has:

F =
1

2
(
µ0 + σ0 − t

σ0

)2, (5)

and the corresponding H’s are

H = 1 and H = 1− 1

2
(
t− µ1 + σ1

σ1

)2 , (6)

respectively. The ROC curves corresponding to the three regions are shown in Fig. 3b.

Unlike the case of uniform distribution, the ROC curve for bell-shaped distributions

is more realistic, with its characteristic bowing above the diagonal line. A Common

feature, however, is that the quickness with which the curve rises (i.e., the vertical

segment in Fig. 3b) is determined by σ0/σ1, and δµ.

From the endpoins of the middle segment (Fig. 3b), one can conclude that if the

empirical ROC curve bows up in a non-symmetric fashion, then one can interpret

3Any similarity with membership functions in Fuzzy Sets is coincidental.
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that as σ0 6= σ1; a symmetric ROC curve implies σ0 = σ1. Specifically, if the bowing

is mostly to the left, then σ0 < σ1. Bowing to the right suggests σ0 > σ1.

Also, the two extremes of the curves - F = 0 and H = 1 - convey some useful

information as well. Note that if δσ = δµ, then the right extreme of the curve meets

the (1,1) point without overlapping the H = 1 line. Similarly, δσ = −δµ implies that

the left extreme of the curve meets the (0,0) point without overlapping the F = 0

axis. Therefore, the amount of overlap of the curve and the two axes is a measure of

the distance between the two means relative to the difference between the standard

deviations.

AUC can be computed to be

AUC = 1− 1

8
(

∆
√

σ0σ1

)4 (7)

This equation confirms that the AUC has an affinity for the quantity ∆ defined in

(4). Furthermore, noting the quartic power of ∆, in contrast to the quadratic power

in (3), it is clear that this AUC is highly nonlinear. Fig. 3c displays this quartic

dependence. Comparing Fig. 3c with Fig. 2c, it becomes clear that bell-shaped

distributions lead to more nonlinearity in AUC than uniform distributions. As such,

empirical AUC curves are apt to be highly nonlinear. This further flattening of the

AUC curve exacerbates AUC’s inability to discriminate between good models.

5 Probabilistic

In some situations the forecast quantity is probabilistic. Then, the previous ap-

proximations are invalid because the forecast quantity is between 0 and 1, while the

previous two examples assume an unbound forecast quantity. Fig. 4a shows the

type of approximation that will be examined here for probabilistic forecasts. Note

that in this approximation, the underlying distributions have no associated standard

deviation; the only parameters are the two “means”, µ0 and µ1.

Three different regions must be considered: t ≤ µ0, µ0 ≤ t ≤ µ1, and t ≥ µ1.

Unlike the previous examples, here there exists no region in which either H or F are

9



1. The functional dependence of H on F (i.e., the ROC curve) in each of the three

regions is

H = 1− µ0

µ1

(1− F ) , H = 1− 1

µ1

[1−
√

(1− µ0) F ]2 , H = (
1− µ0

1− µ1

) F , (8)

respectively. Note that the ROC curve for first and third regions are linear, while

that of the middle section is not. Fig. 4b displays the ROC curve for some values

of the parameters. The values of H and F at the boundaries between the regions are

also shown.

It is worth pointing out that the probabilistic case is different from the previous

examples in one important way. Whereas in the previous examples ROC was shown

to have an affinity for a given combination of the underlying parameters, effectively

reducing the dimensionality of the problem by one, in the probabilistic case, both pa-

rameters - µ0, µ1 - independently affect the ROC curve. This will be made more clear,

below. For this reason, the shape of the ROC curve is not as readily interpretable as

it is in the previous examples.4

In spite of this slight complication, Fig. 4b still offers some useful information.

For instance, consider the slopes of the linear segments. From (8) these are µ0/µ1

and (1 − µ0)/(1 − µ1), for the top and bottom segments, respectively. First, note

that a large slope in one is accompanied by a small slope in the other. In fact, the

relationship between the slopes is linear, and so, the behavior of the extreme ends of

the ROC curve are linearly tied.5 Moreover, a large slope for the bottom segment

translates to µ0 << µ1, and vice versa. By contrast, a large slope for the top segment

corresponds to µ0 >> µ1.

The point along the middle segment at which the slope is 1 can be easily computed

4The dependence of ROC on both parameters is not too surprising. If the forecast quantity
were unbound (as in the previous two examples), then one would expect the difference between the
means (µ0 − µ1) to play a central role. And, as shown, it does in those examples. However, in the
probabilistic case, given the finite bound, one might equally consider the product of the means as
important. In fact, as shown in the expression for AUC, both combinations play equally important
roles.

5The linear relationship is µ1(slopetop) + (1 − µ1)(slopebottom) = 1. It is likely that in a better
approximation than those shown in Fig. 4a, the linearity of the relation will be lost. However, the
behavior of the extremes of the ROC curve will still be tied. This is a general consequence of the
finite bound of probabilistic forecasts.
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from (8). This point is important in that it suggests the corresponding value of the

threshold as an “optimal” value. Its coordinates (Fc, Hc) are given by

Fc =
1− µ0

(µ1 − µ0 + 1)2
, Hc = 1− µ1

(µ1 − µ0 + 1)2
. (9)

It follows from the expression for Fc that the ROC curve will bow to the left if

µ0 ∼ 0.5, and to the right if µ1 ∼ 0.5.

Finally, the AUC can be computed to be

AUC =
1

2
+

1

2
(µ1 − µ0)−

(µ1 − µ0)
3

3µ1(1− µ0)
. (10)

First, note that given the constraints embodied in Fig. 3a, perfect performance (i.e.,

AUC=1) is never achieved, even for µ0 = 0, µ1 = 1; in that limit, one has AUC=5/6.

Second, as anticipated above, AUC depends on two independent quantities - µ1 − µ0

and µ1(1 − µ0). For small values of the former, i.e., low performance, the first two

terms in (10) dominate the expression, leading to a linear dependence on µ1 − µ0.

However, for higher performance values, the last term begins to penalize (because of

the negative sign) AUC in a nonlinear fashion. This nonlinear penalty again leads to

a flattening of the AUC, and is another illustration of how AUC does not discriminate

well between good models.

Fig. 4c displays AUC as a function of µ0 and µ1. The surface is approximately

a plane near the x-y plane. As it rises to higher AUC values, it flattens off. This is

a consequence of the nonlinearity of AUC. Fig. 4c appears to suggest that the single

quantity µ0 + µ1, i.e., the “spine” of the surface, could be the only quantity on which

AUC depends. However, it turns out that the surface is also curved horizontally;

although difficult to see in the figure, the AUC=constant curves are, in fact, nonlinear

curves for larger AUC values. That curvature is due to the “interaction term” µ1(1−

µ0) appearing in (10), which again, is a consequence of probabilistic forecasts.

6 Summary and Conclusion

It is shown that the shape of the ROC curve can be interpreted in terms of the

parameters defining the class-conditional distributions of the forecast quantity. Three
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idealized examples are considered wherein expressions for the ROC curve and the area

under the curve (AUC) can be computed analytically. The examples include two

instances of forecast quantities - one where the quantity is unbound, ranging from

−∞ to +∞, and another bound between 0 and 1, corresponding to probabilistic

forecasts.

Conclusions resulting from the derived analytic expressions are numerous. A few

of the simpler ones can be summarized as follows:

For non-probabilistic forecasts:

• The asymmetry of the ROC curve can be interpreted as an inequality between

the widths, σ0, and σ1.

• An ROC curve bowing to the left (and down) suggests σ0 < σ1, while a bowing

to the right (and up) implies σ0 > σ1.

• The amount of overlap of the ROC curve with the x- and y-axis is a measure of

the distance between the two means, µ0, µ1, relative to the difference between

the widths.

• The AUC is good at discriminating between “good” and “bad” models, but not

between “good” models.

• The AUC has an affinity for a certain combination of the parameters of the

underlying distributions. That combination is of the general form (µ1 − µ0) +

(σ0 + σ1), where µi and σi are some measure of the central tendency and the

width, respectively, of the distribution of forecasts of the ith class.

For probabilistic forecasts:

• ROC curves for probabilistic forecasts are behaviorally “richer” than those of

non-probabilistic forecasts, because they depend on all the underlying parame-

ters, independently, without an affinity for a single and specific combination of

the parameters.
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• ROC curves will bow to the left (and down) if the class-conditional distribution

of the 0th class is centered on 0.5. Similarly, a bowing to the right (and up)

corresponds to µ1 ∼ 0.5.

• The behavior of the ROC curve at the two ends are tied together. A large slope

at the bottom implies µ0 >> µ1, and a large slope at the top suggests µ0 << µ1.

• The AUC is good at discriminating between good and bad models, but not

between good models, with this inability inversely proportional to the product

µ1(1− µ0).

Given the analytic expressions derived for ROC and AUC, it is also possible to

compute error-bars or confidence bands for them. It is worthwhile to examine gaus-

sian class-conditional distributions in full complexity. Although, as shown in Section

1, analytic expressions are not readily available, it is possible to examine the problem

numerically. This can shed some light on the generality of the results found here.

These will be considered in a future article.
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Figure Caption

Figure 1. An example of an ROC diagram with three ROC curves representing

different levels of performance quality. The diagonal line corresponds to random

forecasts (i.e., poor performance), while the curves bowing away from the diagonal

represent higher levels of performance.

Figure 2. The schematics of uniform class-conditional distributions (top), the cor-

responding ROC curve (middle), and the AUC curve as a function of the quantity

∆ = δµ− (σ0 + σ1).

Figure 3. Same as Fig. 2, but for bell-shaped distributions.

Figure 4. Same as Fig. 2, but for bell-shaped, probabilistic forecasts.
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